GLASS CORE TECHNOLOGY

ULTRA-MINIATURIZED | HIGHLY INTEGRATED | HIGH PERFORMANCE

THROUGH-GLASS VIAS (TGVs) IN GLASS SUBSTRATES

The industry’s only proven process for metalization and hermetic sealing of ultra-high-density Through-Glass Vias (TGVs) enables:

  • Extreme Miniaturization & Integration
  • High Performance Electronics
  • High Reliability Packaging Solutions
REDISTRIBUTION LAYER (RDL) CIRCUIT PATTERNING ON GLASS

RDL’s unique thin-film process enables circuit formation on glass substrates, providing for:

  • Low Loss Fan-Out of Chip and Package Interconnects
  • Lower Cost Compared to Traditional Silicon-Based Interposers
CHANNELS AND SHAPED VIAS IN GLASS SUBSTRATES

Glass is ideal for applications requiring shaped vias and channels, including:

  • Microfluidic & Fluidic Devices
  • 3D Structures
  • Integrated Passive Devices, Filters
  • Endless IoT Applications
Watch glass core technology Video

HIGH PERFORMANCE ELECTRONICS

Glass substrates offer high structural integrity, resistance to vibration and temperature, environmental ruggedness, and low electrical loss, making them ideal for next generation microelectronics demands. Samtec’s proprietary Glass Core Technology process leverages the performance benefits of glass to enable performance optimized, ultra-miniaturized substrates for next generation designs.

VIEW TYPICAL DESIGN GUIDELINES

Automotive MEMS and Sensors

Smart Building Sensor Modules

RF Component and Modules

Advanced RF SiP

Automotive RF

CMOS Image Sensor (CIS)

Automotive Camera Modules

Active Images & LiDAR

Microfluidics & Lab-On-Chip

Solid State Medical Images

Medical Robotics Sensors

GLASS CORE TECHNOLOGY | ROADMAP

With a wide market reach and broad range of flow speeds, fused silica-based substrates are an ideal solution for micro fluidic devices, a growing market sector within the biomedical industry. Applications include:

  • Fluidic structures for electronics cooling designs
  • Microfluidic structures for biomedical devices and lab-on-chip application designs

Microstructuring possibilities also include formation of micro channels, cavities, larger cooling channels, mixing channels, 180-degree bends, as well as ferrule openings for optical fibers and v-grooves, among others.

Contact the specialists at Samtec Microelectronics to discuss solutions for your next generation system design.

GLASS CORE TECHNOLOGY

GLASS CORE TECHNOLOGY DESIGN RULES & GUIDELINES

NOTE:

These dimensions are guidelines designed to help release product to manufacturing as quickly as possible. Full capabilities are not limited to the specifications listed below. Please contact SME@samtec.com for applications with tighter requirements.

THROUGH-GLASS VIA (TGV) ENABLED GLASS INTERPOSERS

Samtec’s Through-Glass Vias (TGVs) enable Glass Core Technology (i.e., glass interposers, smart glass substrates and microstructured glass substrates). TGV-enabled glass substrates permit the integration of glass and metal into a single wafer, while interposers promote more efficient package interconnects and manufacturing cycle times.

The hermetically sealed TGVs are manufactured from both high quality borosilicate glass, fused silica (aka quartz), and sapphire. Through the use of high quality glass wafer material, combined with advanced interconnect technologies (e.g., Redistribution Layer), Samtec’s Glass Core Technology enables a one-of-a-kind packaging product.

STANDARD TGV DESIGN GUIDELINES
THROUGH-GLASS VIA CROSS-SECTION VIEW
BOROSILICATE GLASS
FUSED SILICA

REDISTRIBUTION LAYER (RDL) TECHNOLOGY

Samtec's Redistribution Layer (RDL) technology enables circuit formation on glass substrates for interfacing to TGVs via a unique thin-film approach. This provides for low loss fan-out of chip and package interconnects, and lower costs compared to traditional Silicon-based interposers.

GLASS CORE TECHNOLOGY CAPABILITIES
TOP VIEW OF CIRCUIT FOR TOP / BOTTOM RDL
Profile

Visit samtec.com/microelectronics to learn more about Samtec's Glass Core Technology and Advanced IC Packaging Capabilities. Contact SME@samtec.com to speak with our specialists about your next generation microelectronics needs.

In December, we wrapped up a number of new features to Samtec.com to round out the 2018 year, including a new way to find Samtec sales locations and distributors, a new homepage panel for our Micro Rugged products, continued mobile optimizations, and a few updates to our Industry...
112 Gbps Samtec Flyover™ Demo Samtec’s Ralph Page walks us through a live demonstration of a Samtec Flyover™ system which enables 112 Gbps PAM4 performance. The Credo CDR generates two ports of 31-bit PRBS data at 112 Gbps PAM4 data rates. The signal travels from the Credo Pelica...
Since Samtec began in 1976, free connector samples have been a cornerstone of our business model. That said, we’re always looking for ways to continue to improve how we get samples into your hands. Recently we rolled out a simplified way to place sample requests on the website, w...
It was hot, really hot. In fact, things were getting so bad the walls around us were starting to melt, and just like that it was over; we failed current carrying capacity. That is Current Carrying Capacity (CCC) in a nutshell, well it would be if the parts were failing. Samtec pe...
In this video from SC18, Jignesh Shah of Samtec’s High Speed Connectivity Group walks us through a demonstration of a rearchitected Open Compute Project (OCP) wedge switch. By rearchitected we mean it utilizes Samtec Flyover™ high-speed cable assemblies to achieve next gen speeds...